UVM Device Physics

Contribute to the Database


This page lists all the contributors to the UVM Materials Database.

To have your data added to this site, please send an email to david.allemeier@uvm.edu or mwhite25@uvm.edu!


Contributors


B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J.C. Scott, and W. Riess. Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003 9 (3).

Bingjun Wang, Hao Ye, Moritz Riede, and Donal D. C. Bradley ACS Applied Materials & Interfaces 2021 13 (2), 2919-2931
DOI: 10.1021/acsami.0c18490

C. Lee, D. Moon, and J. Han. "Top Emission Organic Light Emitting Diode with Transparent Cathode, Ba-Ag Double Layer." Journal of Information Display 7.3 (2006). pp. 23-36.
DOI: https://doi.org/10.1080/15980316.2006.9652009

Chu, Ta-Ya, and Ok-Keun Song. "Hole Mobility of N , N ′ -bis(naphthalen-1-yl)- N , N ′ -bis(phenyl) Benzidine Investigated by Using Space-charge-limited Currents." Applied Physics Letters 90.20 (2007): 203512-03512-3. Web.
DOI: 10.1063/1.2741055

D. Shelhammer, X.A. Cao, N. Liu, H.J. Wang, and Y.M. Zhou. Doping effects and stability of calcium in organic electron-transport materials. Organic Electronics 84 (2020).
DOI: 10.1016/j.orgel.2020.105799

Exciton 2150 Bixby Road Lockbourne, OH 43137

F. Ventsch, M.C. Gather, and K. Meerholz. Towards organic light-emitting diode microdisplays with sub-pixel patterning. Organic Electronics 11 (2010). pp 57–61.
DOI: 10.1016/j.orgel.2009.09.026

Fong, H H, and S K So. "Hole Transporting Properties of Tris(8-hydroxyquinoline) Aluminum ( Al Q 3 )." Journal of Applied Physics 100.9 (2006): 094502-94502-5. Web.
DOI: 10.1063/1.2372388

G. Li, C. H. Kim, Z. Zhou, J. Shinar, K. Okumoto, and Y. Shirota. Combinatorial study of exciplex formation at the interface between two wide band gap organic semiconductors. Appl. Phys. Lett. 88, 253505 (2006).
DOI: doi.org/10.1063/1.2202391

Handbook of Infrared Optical Materials Paul Klocek CRC Press 1991

Highly Effcient Organic Light-Emitting Diode Using A Low Refractive Index Electron Transport Layer, A. Salehi et al., Adv. Optical Mater., 170019 (2017); DOI: 10.1002/adom.201700197.
DOI: 10.1002/adom.201700197

Jia-Xiu Man, Shou-Jie He, Deng-Ke Wanga, Han-Nan Yanga, Zheng-Hong Lu "Tailoring Mg:Ag functionalities for organic light-emitting diodes" Organic Electronics, Volume 63, Pg. 41-46, 2018
DOI: 10.1016/j.orgel.2018.08.05

Kojima, H. Melting Points of Inorganic Fluorides. Can. J. Chem. 1968, 46, 2968–297

Kurt J. Lesker Company 1925 Route 51 Jefferson Hills, PA 15025 USA

L. S. Hung and C. W. Tang. Interface engineering in preparation of organic surface-emitting diodes. Appl. Phys. Lett. 74, 3209 (1999).
DOI: https://doi.org/10.1063/1.124107

Luminescence Technology Corp 31F-5 No. 99 Sec. 1 Xintai 5th Rd. Xizhi, New Taipei City 22175 Taiwan

M. Cai, T. Xiao, R. Liu, Y.Chen, R. Shinar, and J. Shinar. Indium-tin-oxide-free tris(8-hydroxyquinoline) Al organic light-emitting diodes with 80% enhanced power efficiency. Appl. Phys. Lett. 99, 153303 (2011).
DOI: https://doi.org/10.1063/1.3634210

N. Takada, T. Tsutsui, and S. Saito. Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure. Appl. Phys. Lett. 63, 2032 (1993).
DOI: https://doi.org/10.1063/1.110582

Ossila Ltd, Solpro Business Park Windsor Street, Sheffield S4 7WB, UK

Park, Hoon, Dong-Sub Shin, Hee-Sung Yu, and Hee-Baik Chae. "Electron Mobility in Tris(8-hydroxyquinoline)aluminum (Alq3) Films by Transient Electroluminescence from Single Layer Organic Light Emitting Diodes." Applied Physics Letters 90.20 (2007): 202103. Web.
DOI: 10.1063/1.2734386

Philip Schulz, Jan O. Tiepelt, Jeffrey A. Christians, Igal Levine, Eran Edri, Erin M. Sanehira, Gary Hodes, David Cahen, and Antoine Kahn ACS Applied Materials & Interfaces 2016 8 (46), 31491-31499 DOI: 10.1021/acsami.6b10898
DOI: 10.1021/acsami.6b10898

Sigma-Aldrich PO Box 14508 St. Louis, MO 63178 USA

Tsai, K.‐W., Hung, M.‐K., Mao, Y.‐H., Chen, S.‐A.. Solution‐Processed Thermally Activated Delayed Fluorescent OLED with High EQE as 31% Using High Triplet Energy Crosslinkable Hole Transport Materials. Adv. Funct. Mater. 2019, 29, 1901025.
DOI: 0.1002/adfm.201901025

Turak, A. On the Role of LiF in Organic Optoelectronics. Electron. Mater. 2021, 2, 198-221. https://doi.org/10.3390/electronicmat2020016
DOI: 10.3390/electronicmat2020016

Unpublished

W.M.H. Sachtler, G.J.H. Dorgelo, and A.A. Holscher. The work function of gold. Surface Science, 5(2):221–229, 1966.
DOI: 10.1016/0039-6028(66)90083-5

Wen, S. W., Lee, M. T., and Chen, C. H. “Recent Development of Blue Fluorescent OLED Materials and Devices” Journal of Display Technology 1, no. 1 (2005): 90–99. doi:10.1109/JDT.2005.852802
DOI: 10.1109/JDT.2005.852802

Z.T. Liu et al: The characterization of the optical functions of bcp and cbp thin films by spectroscopic ellipsometry. Synthetic Metals, vol. 150, pp. 159–163, 2005.